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PACKET MODEL OF EXTERNAL HEAT TRANSFER FOR A FLUIDIZED BED 

V. A. Borodulya and V. I. Kovenskii UDC 66.096.5 

A modification is proposed for the packet model of external heat transfer of a 
fluidized bed. The modified model considers heat exchange between the particles 
and the gas flowing through the packet formed by the particles. 

As is known, a fluidized bed is characterized by a discrete structure [I]. The effect 
of this structure on external heat transfer is evidently best accounted for by the packed 
model described in detail in [1-3]. According to this model, rising gas bubbles mix with 
dispersed material and continuously move packets of particles from the core of the bed to 
the wall of the heat exchanger. Approaching the wall, the packets, in the process of non- 
steady heat conduction, give up the heat they accumulated in the core (henceforth, it is 
assumed that the temperature of the heat exchanger is lower than the temperature of the 
bed). The packet model most accurately describes heat exchange in a fluidized bed of fine 
(dp ~ 0.5 mm) particles [3]. 

Another well-known mechanism -- convective heat transfer by a filtering gas -- determines 
heat transfer in a bed of coarse (dp > 5 mm) particles [3]. 

In accordance with the assumption of the additivity of the components of external heat 
transfer [1-6], transport models corresponding to the limiting cases of fine and coarse 
particles are used jointly to describe the process in a fairly broad and practicable range 
of intermediate dispersed-material sizes (0.5 < dp < 5 mm). Here, an increase in particle 
size changes the relative contribution of the main heat-transfer mechanisms. 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian 
SSR, Minsk. Translated from Inzhnerno-Fizicheskii Zhurnal, Vol. 47, No. 5, pp. 789-796, 
November, 1984. Original article submitted November 4, 1983. 
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Wall packet 

Gas interlayer Solid phase 

Fig. I. Model for calculating 
nonsteady heat exchange between 
packet and surface. 

Convective heat transfer intensifies with an increase in dp, since there is a rapid 
increase in gas filtration velocity [3, 4]. Within the framework of the existing model, 
the reduction in the contribution of the packet mechanism in the transition to coarse parti- 
cles is due to the thermal inertia of the particles, which do not have the time to cool 
while the packet is near the wall [6]. However, this explanation contradicts the results 
of experiments involving the cooling of particles close to a heat-exchanger surface in a 
high-temperature bed [5]. This contradiction is evidence of the approximate nature of the 
model. 

In our opinion, the packet model can be improved if we consider that the gas continu- 
ously blows through the packet and is capable by means of phase exchange of transferring 
heat to the particles from the core of the bed and thus compensating for the thermal losses 
of the particles during cooling at the wall. The exact number of particles receiving heat 
from the gas and the temperature distribution in the filtering flow are indeterminate and 
change randomly. Thus, in this article we assume that the mean temperature of the gas in a 
packet is always equal to the temperature in the core of the bed and that the heat received 
by the solid phase can be calculated using the effective phase-heat-exchange coefficient, 
found by the formulas [3] 

Nu* = 0.016 Pr  1/a , 0,1 < < 2 0 0 ,  ( l a )  
8 

Nu* ~ 0.4 Pr  1/a , 200 < < 105. ( l b )  
8 

Here, it is considered that the porosity of the packet and the velocity of the filtering gas 
are connected by the relation [2] ~ = ((18Re + 0.36Re2)/Ar) ~ just as for a homogeneous 
bed. 

The model proposed in [6] is used to calculate nonsteady heat exchange between the 
packet and the surface~ In this model, rows of particles in the packet are replaced by 
thermally infinite thin strips with a heat capacity (i -- ~)ypdpCpppS (S is the area of any 
element of the model) and separated by layers of the medium of thickness Ig = cypdp with a 
thermal conductivity X e (Fig. i). The thickness of the intervening gas layer between the 
wall and the first row of particles, not determinable unambiguously, was taken equal to Ig. 
With this choice, the following condition [7] is satisfied: 

l i ra Nu  e = 2, (2) 
%~0 

The effective thermal conductivity was calculated from Bruggman's formula [8]. Given 
the condition %p/~g > 20, this formula is usually valid for a gas fluidized bed and takes the 
form 

~e-- %g (3) 
81,5 

During cooling at the wall of the heat exchanger, the heat content of any of N rows 
of particles changes as a result of heat conduction between adjacent rows (the heat flux 
between the i-th and i + 1-st rows q = --Xe(t~+1 -- t~)/Ig) and as a result of heat exchange 
with the filtering gas (the heat flux to the i-th row of particles is 6(1 -- ~)yp~*(t b -- 
t~)). This process is described by the following system of ordinary differential equations 
in the dimensionless temperatures of N rows of particles forming packets (a detailed de- 
scription of the derivation of the system is given in [6], which, in contrast to this 
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article, introduces contact resistance and does not consider heat exchange between the parti- 

cles and gas): ~A~ ~N 

with the initial conditions ~N]~=0----I, i----I, ..., N, where 

~e 6~z* 
C I ~ , C2 ~ , 

tf-tw 
t b -- t w 

System (4), with an arbitrary N, is solved numerically. 

written for two special cases N = 1 and N ~ ~. 

where 

When N = l, 

Y exp (  z' )+Tff~ 
~I (~) = I + 2------Y -- KT---~ ' 

31 I + Y  , K 2 Y  1 

l + 2 Y  1 + 2Y 2cl 

An analytical solution can be 

(4) 

y z e  . (5) 
6 (1 8) 2 , --  8Vp%aNu 

K is a dimensionless parameter determining the change in the time constant of a single-row 
packet in relation to the ratio of the conductive heat flow from the particles to the sur- 
face to the heat transfer from the filtering gas to the particles; Y is a dimensionless 

parameter equal to this ratio. 

When N -~ ~, 

1[exp( ) ( i ) ( i)erc( )] 
~i (T)= I-- 2 ~ erfc 2V-c-~- + ]/-c--~-- + exp V-~ 2]/c--~- ~/-c--~- , 

- ~ = l - e x p ( V . y ) ,  i =  1, , . . ,  ~ .  (6) 

It can be seen from Eqs. (5) and (6) that the dimensionless parameter Y completely de- 
termines the solution of system (4) for a single-row packet and to a large degree determines 
the solution for a infinite packet. In connection with this, it is best to explain how this 
parameter changes and, thus, how Eqs. (5) and (6) change in relation to the diameter of the 

fluidized particles. 

The following limit relations can be written for very small values of dp: 

here K + i, 

Nu* --+ 0, y - +  oo, 

~I(T)-+ exp -- + i , O~ (T)-~I-- erfc -+0 (7) 

It can be seen from Eqs. (7) that for very small particles Eqs. (5) and (6) coincide 
at the limit with the solution of the problem of nonsteady cooling of a packet through 

which no gas flows [6]. 

As particle diameter increasesj there is a rapid increase in phase heat exchange. At 

the limit we can write 

Nu*--+oo, Y-+0, K-+0, ~I(T)--+I, ~1--+1, 07(T)--+l, O7-+1. (8) 
It follows from limit relations (8) that the rate of phase heat exchange in a packet of 

very coarse particles is high enough to compensate for the heat lost by the particles as a 
result of heat conduction to the wall. Here, the temperature of the solid phase remains 
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Fig. 2. Dependence of the dimensionless parameter Y on particle diameter 

with different packet porosities: i) s = 0.48; 2) 0.6. dp, m. 

Fig. 3. Steady-state temperature distribution in a packet consisting of 
i0 rows of particles (a -- e = 0.48; b -- 0.6): i) without allowance for 
phase heat exchange; 2-4) with allowance for phase heat exchange: 2) dp = 

0.i mm; 3) 0.3; 4) i mm. 

constant regardless of the time of contact with the surface and is equal to t b. A tempera- 
ture distribution typical of gas-convection models [3~ 4] is formed in the bed. 

Equations (7) and (8) make it possible to qualitatively evaluate the range of dp in 
which the limiting models -- an unblown packet for fine particles and gas-convection transfer 
for coarse particles -- are valid. As boundaries we may take those values of the parameter 
Y at which the steady-state distribution of the temperature of the particles in a packet dif- 
fers no more than 5% from the temperature distribution in the corresponding limiting models. 
Then the conditions of applicability of these models can be written in the form 

Y > 9 . 5  (9a) 

for conventional packet models and 

Y < 0 . 0 2 6  (9b) 

for models of gas-convection external heat exchange. 

Figures 2-4 show the dependence of the parameter Y, the steady-state temperature dis- 
tribution in the packet, and the complex K on the size of the fluidized particles. We took 
the following values for the parameters of the gas--air system under normal conditions: pg = 
1.293 kg/m3; v = 133"10 -7 m2/sec; Xg = 24"10-3 W/m'~ 0p = 2500 kg/m3; Cp = 1012 J/kg'~ 
The results are shown for ~ = 0.48 and ~ = 0.6 in connection with the fact that, according 
to the data in [5], the porosity of the packet may be substantially greater than in the case 
of minimal fluidization. 

It can be seen from Fig. 2 that the dimensionless parameter Y is a rapidly decreasing 
function of particle diameter. An increase in packet porosity, other conditions being equal, 
causes a reduction in Y. For the system parameters adopted in our calculations, conditions 
(9) change as follows: with a packet porosity ~ = 0.48, the conventional packet model is 

acceptable if dp < 0.35 mm, while gas-convection completely determines external heat exchange 
in a bed of particles with dp > 7 mm; at ~ = 0.6, conditions (9a) and (9b) take the forms 
dp < 0.25 mm and dp > 3.5 mm, respectively. 

Figure 3 shows the steady-state temperature distribution in a 10-row packet. It can be 
seen from the figure that a profile with the main temperature gradient localized near the 
surface of the heat exchanger is formed when dp increases. In contrast to our study, the 
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Fig. 4. Steady-state temperature of the first row 
in a packet and the parameter K in relation to parti- 
cle size: i) ~ = 0.48; 2) 0.6; I) ~]; II) ~11~ III) 
F~; IV)K. #:, ~ 

analogous temperature distribution in [6] is explained exclusively by the thermal inertia 
of the particles, not having time to cool while the packet is near the wall. 

Figure 4 shows the dependence on dp of the parameter K and the steady-state temperature 
of the row of particles closest to the wall with N = i, N = i0, and N + =. It can be seen 
that the value of ~ changes within a fairly broad range of particle diameters from a value 
typical of the packet model to the value used in gas-convection models ~f=l Here, there 
is a rapid decrease in the time taken to establish a steady-state temperature distribution 
in the packet. 

The coefficient of heat transfer between the packet and the surface is determined from 
the formula 

#f(~) (io) Nue(~ ) = 
yp8 

It follows from (10) that the calculated value of the heat-transfer coefficient should de- 
pend on the size of the packet (the number of rows of particles N). In particular, using 
(5), for a single-row packet the following expression can be Written for the dimensionless 
heat-transfer coefficient: 

Nu~(~) = - - ~ 1  [ . Y exp(  ~ ) + ~ 1 ] .  (ii) 
ype 1 q- 2 Y K~o 

The mean value of the coefficient over the time of contact of the packet with the surface 
T' is determined by the relation 

1 
<Nue>~,  

Up 8 

Let us see how Eqs. (ll) and 
packet contact with the surface. 

Y K T  0 "17 t 

(12) change  in  r e l a t i o n  to  p a r t i c l e  s i z e  and t ime of  
For  v e r y  sma l l  p a r t i c l e s  Nu e + 0, Y § ~,  so t h a t  

1 
NUe(T)-~ 2y~8 1 +exp , 

The e f f e c t  o f  phase  h e a t  exchange  in  t h i s  c a s e  i s  n e g l i g i b l y  s m a l l ,  and i t  can be  assumed 
t h a t  no gas f l o w s  th rough  the  p a c k e t .  

For very large particles Nu* + =, Y § 0, 

(12) 

(13) 

Nue(~) ~ 1 ,  <Nue>~,___ ~ ~ (14) 
yps yp8 

The temperature of coarse particles remains constant due to intensive phase heat exchange, 
and the coefficient of heat transfer between the packet and the surface does not depend on 
the contact time. 
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For very short contact times (~' § 0), limiting values of Nue and <Nu> which are finite 
in accordance with [1-6] are determined by Eqs. (14), as for the case of coarse particles. 
In particular, for a dense bed~ considering that the porosity of the row of particles closest 
to the wall ~ ~ 0.5 [9] and yp = i, it is easy to obtain Nu e = 2 from (14). This value 
agrees with the test data in [7]. Thus, the rate of heat transfer between the packet and 
surface at limitingly short contact times is determined mainly by the arrangement of the 

particles at the wall of the heat exchanger. 

In the case of very long times of contact of the packet and surface, which are probable 
when there is poor mixing of the solid phase, the following limit relation may be obtained: 

n u e =  <Nue>x ,  = --!--I 1 § (15) 
y~8 1 + 2 Y 

S e v e r a l  c o n c l u s i o n s  can be drawn f rom th e  a s s u m p t i o n  made h e r e  r e g a r d i n g  t h e  r o l e  of  
phase heat exchange in the packet mechanism of external heat transfer and the results ob- 

tained on the basis of this model. 

The proposed model subsumes the conventional model as a special case realized in the 
fluidization of fine particles. Another limiting case of the proposed model is an isothermal 
packet in the case of coarse particles, for which the main mechanism of external heat trans- 
fer is gas-convection transport. Heat transfer can be calculated for an intermediate range 
of particle sizes as well, when the temperature profile in the packet is different from the 

limiting cases. 

The results of the calculations -- temperature distribution, heat-transfer coefficient, 
time of establishment of steady-state temperature profile in the packet -- are determined to 
a significant degree by a dimensionless parameter equal to the ratio of the heat flows due 
to conduction from the packet to the surface of the heat exchanger and due to phase heat 
exchange, i.e., from the core of the bed to the packet. 

The modified packet model corresponds to a tw0-stage heat-transfer mechanism: the gas, 
the main heat carrier in beds of particles of any size, transfers heat from the core of the 
bed to particles in a packet as a result of phase heat exchange; the particles, being an in- 
termediate heat carrier, transfer heat to the surface with which the packet is in contact 
by conduction through intervening gas layers. Here, the packet of particles can be likened 
to a movable system of ribs on the heat-exchanger wall. 

In a bed of fine particles, the effective phase heat exchange is negligible, and a sin- 
gle-stage representation of the packet mechanism is quite suitable -- here, the particles 
being regarded as sinks for heat accumulated in the core of the bed. In the case of coarse 
particles, the high-intensity phase heat exchange that occurs fully compensates for the loss 
of heat from particles near the surface. In this case, particles are excluded from the pro- 
cess of external heat exchange, and gas-convection transport is the only mechanism of heat 
transfer. 

Thus, the proposed modified packet model can be applied to beds of particles of any 
sizes. 

NOTATION 

C, heat capacity; ci, c2, coefficients of equations of system (4); dp, diameter of par- 
ticles; K, dimensionless parameter; Ig, thickness of gas interlayer in model; t, temperature; 
U, gas velocity; yp, dimensionless distance between centers of adjacent particles, expressed 
in terms of their diameters; Y, dimensionless parameter; a, coefficient of heat transfer be- 
tween fluidized bed and surface; ~*, interphase heat transfer coefficient; c, porosity; I, 
thermal conductivity; ~, kinematic viscosity; 0, density; T, time; To, time constant for a 
single-row unblown packet; T', time of contact of packet with surface; ~ , dimensionless 
temperature of the i-th row of particles of an N-row packet; Ar=9.814(pp/pg--l)/v~. Nue=c~/p/~e. 
Nu*==*dp/%g, Pr=vCep~/Xg, Re=Udp/v. Indices: w, wall; b, core of bed; e, effective; g, gas; p, 
particles; ~, steady-state value; < > , mean. 
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EXPERIMENTAL DETERMINATION OF THE POROSITY FIELD IN A FLUIDIZED 

BED BY THE RADIOISOTOPE METHOD 

N. N. Prokhorenko and S. A. Tikhomirov UDC 66.096.5:537.2.24 

We propose a method for constructing the concentration field of the solid phase 
in a disperse system which differs from conventional methods in that performing 
the measurements does not affect the hydrodynamics of the system. 

The experimental method of constructing the concentration field of the solid phase or 
the porosity of a disperse system is based on the measurement of the spatial coordinates of 
a representative particle tagged with the isotope ~~ [i]. It was shown in [i] that a 
coordinate can be measured to an accuracy of • -3 m in apparatus of diameter D = 0.25 
m and height 0.75 m. The accuracy of the measurement of a coordinate can be increased by an 
order of magnitude by increasing the response speed of scintillation counters to 10-7-10 -8 
sec with an efficiency no worse than 10%. With such scintillators the absolute velocity of 
a particle can be determined with a probable accuracy of • -2 m/sec. 

The concentration field of the solid phase or the porosity is determined experimentally 
by using an empirical probability density distribution function, the histogram of the random 
vector with components x, y, z, Ixl ~ D/2, IYl ~ D/2, 0 ~ z < ~. 

In constructing a histogram it is necessary to solve three fundamental problems: i) 
into what sized cells should the coordinate axes be divided; 2) how many measurements should 
be made of the random quantity, i.e., what should the sample size be; 3) what are the 
necessary conditions to ensure mutual independence, in the probabilistic sense, of the mag- 
nitudes of any two measurements. 

A cell in which the porosity is measured should contain enough (N) granules to permit 
neglecting the statistical fluctuations of the porosity, the relative fraction of which is 
determined by the magnitude of i/~ [2]. On the other hand, the size of a cell is fixed 
from below by the accuracy of the measurement of the coordinate of the tagged particle. 
In our case we chose a 2"10 -2 m cell. 
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